我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译
Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.
translated by 谷歌翻译